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Question 1. Consider R with the co-finite topology, say 7. Which of the following sequences are convergent and
what are their limits?

(2) {an}n ={1,2,3...},ie,an=mn
(i) {an}tn ={1,1,2,1,3,1...}, i.e., azn—1 = n and a2, = 1)
(#1) {an}tn ={1,2,1,2,1,2...}, i.e., azn—1 = 1 and az, = 2)

Answer:

(1) The sequence {an}n is convergent and converges to every points in R. Let 2 € R and U, be an open set
in 7 containing x. Then U, = R\ {z1,22,...,2n |2 # z and z; € R}. Let m = [max{z1,x2,...,zn}] + 1,
then a; € U, for all ¢ > m. Therefore, the sequence {a, }» converges to every points in R.

(i¢) The sequence {an}. is convergent and converges to 1. Let U be an open set in 7 containing 1. Then
U =R\ {z1,22,...,2n|z; # 1 and x; € R}. Let m = [max{z1,z2,...,2n}] + 1, then a; € U, for all
1 > 2m — 1. Therefore, the sequence {an}» converges to 1.
Let 1 # 2 € R and V be an open set R\ {1} in 7 containing z. Since 1 € V, az; ¢ V. Thus, the sequence
{an}n will not converge to z.

(#47) The sequence {an}» is not convergent. Let € R. Let

g JRNVY ifa
TR\ {2} ifz=1.

Then U is an open set in 7 containing x. Now, either 1 € U or 2 ¢ U, implies that, either az;—1 &€ U or
az; € U. Thus, the sequence {an,}» will not converge to z.

Question 2. Prove that any second countable space is first countable. Is the converse true? Justify.

Answer: A space X is called first countable if each x € X has a countable neighborhood basis. A space X is
called second countable if there exists a countable basis for the topology of X. Thus, by definition, every second
countable space is first countable: if {U;}{2; is a countable basis for the topology of a space X, then for each
x € X, the sets {U; |z € U;} form a countable neighborhood basis of X.

The converse is not true. Let X be any uncountable set. The function d given by d(z,y) = 0 if x = y and
d(z,y) = 1 if  # y is a metric, and the corresponding topology on X is discrete. Thus every point of X is an
open set, which implies that (X, d) is not second countable (because X itself is assumed to be uncountable). But
it is first countable: for a given x € X, the open sets {{z}, X} form a countable neighborhood basis of x.

Question 3. Show that R with the co-finite topology is not regular. Prove also that R with the co-countable
topology is not regular.

Answer: For z € R, the complement of R \ {z} is finite (resp., countable). Therefore, R\ {z} is a open set in
co-finite and co-countable topology and hence {z} is a closed set in both topology. Therefore, every one-point
sets are closed in both topology.

But, there are no two disjoint open sets in R with the co-finite and co-countable topology. Let U and V be
two disjoint open sets in R with the co-finite (resp., co-countable) topology. Then V' C R\ U which is finite
(resp., countable). Therefore V is finite (resp., countable). Since R is uncountable, R\ V will not be finite (resp.,
countable) and hence V will not be a open set in R with the co-finite (resp., co-countable) topology. Hence, R is
not regular with the co-finite and co-countable topology

Question 4. If z and y are distinct points of a regular space (X, 1), show that there exist open sets U and V'
such that z e U,y € Vand UNV = 0.



Answer: Since one-point sets are closed in a regular space, {y} is a closed set. Now, by the definition, there are
disjoint open sets containing x and {y}, i.e., there exist open sets O, containing z and O, containing {y} such
that O, N O, = 0. Now, by Lemma 31.1 of Munkress Topology book, there exist open sets U and V such that
zre€UCUCO,andy€V CV CO,y. Since 0, N0, =0, TNV = 0.

Question 5. Prove that any open connected set in C[0, 1] is polygonally connected.

Here C]0, 1] is the space of real valued continuous function on [0, 1] with the metric: d(f, g) = sup{|f(z) — g(z)| :
0 <z <1}. A polygonal path is a path made up of a finite number of line segments.

Answer: Claim. Every open ball in C[0, 1] is convex.

Let B-(f) ={g : d(f,g9) < r} be an open ball in C[0, 1]. Let g, h € B-(f). Then, for 0 <t <1, d(f,tg+(1—t)h) =
sup{|f(z) = (tg + (1 = )h)(z)| : 0 < & < 1} = sup{[t(f(z) — g(z)) + (1 — )(f(2) — h(z))(z)] : 0 <@ <1} <
tsup{|f(z) —g(x)] : 0 <z <1} + (1 — &) sup{|f(z) — h(z)| : 0 <z <1} < tr+ (1 —t) = r. Therefore, B, (f) is

convex.

Let U be a open connected set in C[0,1]. We have to prove that U is polygonally connected. Let f € U and
V C U is a collection of all elements in U, which are joined with f by a polygonal path.

Claim. V is an open subset of U.

Let g € V C U. Since U is an open set, there is a ball B.(g) C U. Since B;(g) is convex and f and g are
joined by a polygonal path, every elements of B,(g) are joined with f by a polygonal path and hence B,(g) C V.
Therefore, V' is an open set in U

Claim. U\V = 0.

IfU\V #0thenlet h e U\ V C U. Since U is an open set, there is a ball Bi(h) C U. If B(h) NV # (0 then
there is a polygonal path between f and h as B:(h) is convex, which is not possible. Therefore, B,(h) NV = 0,
ie,, By(h) C U\ V. Thus, U\ V is an open in U. This contradicts the fact that U is connected. Therefore,
U\V =0, ic,V=U.

This proves that U is polygonnaly connected.

Question 6. Let A be a subgroup of R under addition. Show that either A is dense in R or else the subspace
topology of A is the discrete topology.

Answer: Since A is a subgroup, 0 € A. If A = {0} then subspace topology of A is the discrete topology. Now,
we assume that A # {0}.

Let r =inf{a > 0:a € A} #0. If r ¢ A then there is a z € A such that r < z < r+r/2 and thereisay € A
such that r <y <z asr=inf{a>0:a € A} and r ¢ A. Therefore, z —y <r/2and z —y € A as A is a additive
subgroup of R. This contradicts that r = inf{a > 0: a € A}. Therefore, r € A and hence {0, +r, +2r,...} C A.

claim. A ={0,+r +2r ... }.

Let © € A\ {0,£r,+2r,...}. Then kr < & < (k+ 1)r for some k € Z. Therefore, 0 < z — kr < r and z — kr € A.
This contradicts the fact that r = inf{a > 0: a € A}. Therefore, A = {0, £r,+2r,...}. Thus, subspace topology
of A is the discrete topology.

claim. If inf{a > 0:a € A} =0 then A is dense in R.

Let 0#z € A. Let y e R\ A and (y — ¢,y + t) be an arbitrary open interval containing y. Since inf{a > 0:a €

A} =0 and A # {0}, there exists z € A such that 0 < z < t. Therefore, iz € A for all | € Z. Now, there exists a
k € Z such that kz < y < (k + 1)z. Therefore, y — t < kz < y and hence A is dense in R.



