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Question 1. Consider R with the co-finite topology, say τ . Which of the following sequences are convergent and
what are their limits?

(i) {an}n = {1, 2, 3 . . . }, i.e., an = n

(ii) {an}n = {1, 1, 2, 1, 3, 1 . . . }, i.e., a2n−1 = n and a2n = 1)

(iii) {an}n = {1, 2, 1, 2, 1, 2 . . . }, i.e., a2n−1 = 1 and a2n = 2)

Answer:

(i) The sequence {an}n is convergent and converges to every points in R. Let x ∈ R and Ux be an open set
in τ containing x. Then Ux = R \ {x1, x2, . . . , xn |xi 6= x and xi ∈ R}. Let m = [max{x1, x2, . . . , xn}] + 1,
then ai ∈ Ux for all i ≥ m. Therefore, the sequence {an}n converges to every points in R.

(ii) The sequence {an}n is convergent and converges to 1. Let U be an open set in τ containing 1. Then
U = R \ {x1, x2, . . . , xn |xi 6= 1 and xi ∈ R}. Let m = [max{x1, x2, . . . , xn}] + 1, then ai ∈ Ux for all
i ≥ 2m− 1. Therefore, the sequence {an}n converges to 1.

Let 1 6= x ∈ R and V be an open set R \ {1} in τ containing x. Since 1 6∈ V , a2i 6∈ V . Thus, the sequence
{an}n will not converge to x.

(iii) The sequence {an}n is not convergent. Let x ∈ R. Let

U =

{
R \ {1} if x 6= 1

R \ {2} if x = 1.

Then U is an open set in τ containing x. Now, either 1 6∈ U or 2 6∈ U , implies that, either a2i−1 6∈ U or
a2i 6∈ U . Thus, the sequence {an}n will not converge to x.

Question 2. Prove that any second countable space is first countable. Is the converse true? Justify.

Answer: A space X is called first countable if each x ∈ X has a countable neighborhood basis. A space X is
called second countable if there exists a countable basis for the topology of X. Thus, by definition, every second
countable space is first countable: if {Ui}∞i=1 is a countable basis for the topology of a space X, then for each
x ∈ X, the sets {Ui |x ∈ Ui} form a countable neighborhood basis of X.

The converse is not true. Let X be any uncountable set. The function d given by d(x, y) = 0 if x = y and
d(x, y) = 1 if x 6= y is a metric, and the corresponding topology on X is discrete. Thus every point of X is an
open set, which implies that (X, d) is not second countable (because X itself is assumed to be uncountable). But
it is first countable: for a given x ∈ X, the open sets {{x}, X} form a countable neighborhood basis of x.

Question 3. Show that R with the co-finite topology is not regular. Prove also that R with the co-countable
topology is not regular.

Answer: For x ∈ R, the complement of R \ {x} is finite (resp., countable). Therefore, R \ {x} is a open set in
co-finite and co-countable topology and hence {x} is a closed set in both topology. Therefore, every one-point
sets are closed in both topology.

But, there are no two disjoint open sets in R with the co-finite and co-countable topology. Let U and V be
two disjoint open sets in R with the co-finite (resp., co-countable) topology. Then V ⊂ R \ U which is finite
(resp., countable). Therefore V is finite (resp., countable). Since R is uncountable, R \ V will not be finite (resp.,
countable) and hence V will not be a open set in R with the co-finite (resp., co-countable) topology. Hence, R is
not regular with the co-finite and co-countable topology

Question 4. If x and y are distinct points of a regular space (X, τ), show that there exist open sets U and V
such that x ∈ U, y ∈ V and Ū ∩ V̄ = ∅.
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Answer: Since one-point sets are closed in a regular space, {y} is a closed set. Now, by the definition, there are
disjoint open sets containing x and {y}, i.e., there exist open sets Ox containing x and Oy containing {y} such
that Ox ∩ Oy = ∅. Now, by Lemma 31.1 of Munkress Topology book, there exist open sets U and V such that
x ∈ U ⊂ Ū ⊂ Ox and y ∈ V ⊂ V̄ ⊂ Oy. Since Ox ∩Oy = ∅, Ū ∩ V̄ = ∅.

Question 5. Prove that any open connected set in C[0, 1] is polygonally connected.

Here C[0, 1] is the space of real valued continuous function on [0, 1] with the metric: d(f, g) = sup{|f(x)− g(x)| :
0 ≤ x ≤ 1}. A polygonal path is a path made up of a finite number of line segments.

Answer: Claim. Every open ball in C[0, 1] is convex.

Let Br(f) = {g : d(f, g) ≤ r} be an open ball in C[0, 1]. Let g, h ∈ Br(f). Then, for 0 ≤ t ≤ 1, d(f, tg+(1−t)h) =
sup{|f(x) − (tg + (1 − t)h)(x)| : 0 ≤ x ≤ 1} = sup{|t(f(x) − g(x)) + (1 − t)(f(x) − h(x))(x)| : 0 ≤ x ≤ 1} ≤
t sup{|f(x) − g(x)| : 0 ≤ x ≤ 1} + (1 − t) sup{|f(x) − h(x)| : 0 ≤ x ≤ 1} ≤ tr + (1 − t) = r. Therefore, Br(f) is
convex.

Let U be a open connected set in C[0, 1]. We have to prove that U is polygonally connected. Let f ∈ U and
V ⊂ U is a collection of all elements in U , which are joined with f by a polygonal path.

Claim. V is an open subset of U .

Let g ∈ V ⊂ U . Since U is an open set, there is a ball Br(g) ⊂ U . Since Br(g) is convex and f and g are
joined by a polygonal path, every elements of Br(g) are joined with f by a polygonal path and hence Br(g) ⊂ V .
Therefore, V is an open set in U

Claim. U \ V = ∅.

If U \ V 6= ∅ then let h ∈ U \ V ⊂ U . Since U is an open set, there is a ball Bt(h) ⊂ U . If Bt(h) ∩ V 6= ∅ then
there is a polygonal path between f and h as Bt(h) is convex, which is not possible. Therefore, Bt(h) ∩ V = ∅,
i.e., Bt(h) ⊂ U \ V . Thus, U \ V is an open in U . This contradicts the fact that U is connected. Therefore,
U \ V = ∅, i.e., V = U .

This proves that U is polygonnaly connected.

Question 6. Let A be a subgroup of R under addition. Show that either A is dense in R or else the subspace
topology of A is the discrete topology.

Answer: Since A is a subgroup, 0 ∈ A. If A = {0} then subspace topology of A is the discrete topology. Now,
we assume that A 6= {0}.

Let r = inf{a > 0 : a ∈ A} 6= 0. If r 6∈ A then there is a x ∈ A such that r < x < r + r/2 and there is a y ∈ A
such that r < y < x as r = inf{a > 0 : a ∈ A} and r 6∈ A. Therefore, x− y < r/2 and x− y ∈ A as A is a additive
subgroup of R. This contradicts that r = inf{a > 0 : a ∈ A}. Therefore, r ∈ A and hence {0,±r,±2r, . . . } ⊂ A.

claim. A = {0,±r,±2r, . . . }.

Let x ∈ A \ {0,±r,±2r, . . . }. Then kr < x < (k+ 1)r for some k ∈ Z. Therefore, 0 < x− kr < r and x− kr ∈ A.
This contradicts the fact that r = inf{a > 0 : a ∈ A}. Therefore, A = {0,±r,±2r, . . . }. Thus, subspace topology
of A is the discrete topology.

claim. If inf{a > 0 : a ∈ A} = 0 then A is dense in R.

Let 0 6= x ∈ A. Let y ∈ R \ A and (y − t, y + t) be an arbitrary open interval containing y. Since inf{a > 0 : a ∈
A} = 0 and A 6= {0}, there exists z ∈ A such that 0 < z < t. Therefore, lz ∈ A for all l ∈ Z. Now, there exists a
k ∈ Z such that kz < y < (k + 1)z. Therefore, y − t < kz < y and hence A is dense in R.
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